Heim

Mechanostat

Mit Mechanostat bezeichnet man ein Modell, welches das Knochenwachstum und den Knochenabbau beschreibt. Es wurde von Harold Frost im Utah Paradigm of Skeletal Physiology [1][2][3][4][5] 1960 aufgestellt und stellt eine Ergänzung des Wolffschen Gesetztes dar (Julius Wolff 1836–1902).

Demnach wird Knochenwachstum und Knochenabbau durch die maximale elastische Verformung des Knochens bestimmt. Grund für die Verformung des Knochens sind die auftretenden kurzzeitigen Maximalkräfte (in-vivo messbar beispielsweise mittels Mechanographie). Dieser Vorgang (Regelkreis) findet ein Leben lang statt. Der Knochen adaptiert also seine mechanische Funktion, das heißt seine Geometrie und damit die Knochenfestigkeit, ein Leben lang auf die täglichen Anforderungen. Dementsprechend besteht im gesunden Regelkreis Muskel-Knochen ein linearer Zusammenhang zwischen Muskelquerschnittsfläche (als Surrogat für die typische Maximalkraft des Muskels) und Knochenquerschnittsfläche (als Surrogat für Knochenfestigkeit)[6][7].

Diese Tatsache hat gerade auch für den Knochenschwund (Osteoporose) Konsequenzen, da diesem durch geeignetes Training, welches die benötigten Spitzenkräfte zur Stimulation des Knochenwachstums erzeugt, entgegengewirkt werden kann, beispielsweise das Vibrationstraining.

Inhaltsverzeichnis

Modeling und Remodeling

Frost spricht von vier Bereichen der elastischen Knochenverformung die zu unterschiedlichen Konsequenzen führen:

Somit besitzt der typische Knochen, beispielsweise die Tibia, einen Sicherheitsfaktor von etwa 5 bis 7 zwischen maximaler typischer Verformung (maximal 2000 bis 3000μStrain) und seiner Bruchgrenze (circa 15000μStrain)

Einheit: Strain E

Die Verformung der Knochen wird in μStrain[2][3] gemessen wobei 1000μStrain = 0,1% Längenänderung entsprechen.

Zu berücksichtigen ist hierbei, dass die Festigkeit des Knochens stark von der Geometrie und von der Richtung der Krafteinleitung abhängig ist. Die Tibia beispielsweise hat in axialer Richtung etwa eine Bruchgrenze vom 50- bis 60-fachen Körpergewicht. Senkrecht zu dieser Achse liegt die Bruchgrenze jedoch um den Faktor 10 oder mehr niedriger.

Unterschiedliche Knochen können durchaus unterschiedliche Modeling- und Remodeling-Schwellen aufweisen. Für die Tibia liegt die Modeling-Schwelle beispielsweise bei ca. 1500μStrain (= 0,15% Längenänderung), am Schädelknochen hingegen liegt die Schwelle etwa um den Faktor 6 bis 8 niedriger. Da sich die reinen Materialeigenschaften, wie beispielsweise Dichte und Festigkeit, dieser beiden Knochen nicht unterscheiden, bedeutet dies, dass der Schädelknochen im Vergleich zur Tibia einen deutlich höheren Sicherheitsfaktor (also Bruchgrenze im Vergleich zur typsichen Belastung) besitzt, denn bei niedriger Modelingschwelle führen schon deutlich kleinere tägliche Kräfte zu „dickeren“ Knochen.

Beispiele

Typische Beispiele für den Einfluss der Maximalkräfte und der daraus resultierenden Verformungen auf den Regelkreis Muskel-Knochen sind Langzeitraumfahrer und Patienten mit einer Querschnittslähmungen nach einem Unfall (Paraplegiker). So wird bei einem Rollstuhlfahrer Muskel und Knochen im unbenutzten Beinbereich drastisch abgebaut, während im vielgenutzten Armbereich Muskel und Knochen erhalten oder gar aufgebaut werden[8][9]. Der selbe Effekt tritt auch bei Langzeitastronauten ein[10], da diese aufgrund der fehlenden Schwerkraft im All ebenfalls keine ausreichenden Maximalkräfte auf die Knochen insbesondere des Beinbereichs ausüben können.

Würde für den Zustand des Knochens rein die Knochenmasse ausschlaggebend sein, so würde jeder Langzeitastronaut und jeder Rollstuhlfahrer unter Osteoporose leiden. In der Tat handelt es sich aber in beiden Fällen nicht um einen erkrankten Knochen sondern lediglich um den fehlende Stimulus der für die Anregung von Knochenerhalt bzw. Knochenwachstum durch Maximalkräfte bzw. der daraus resultierenden Verformung der Knochen. Dies belegt auch die Tatsache, dass Muskel- und Knochenverluste bei Langzeitastronauten nach der Rückkehr auf die Erde bei ausreichender Trainingsdauer wieder vollständig kompensiert werden.

Literatur

  1. Frost H.M.: Defining Osteopenias and Osteoporoses: Another View (With Insights From a New Paradigm), Bone 1997, Vol. 20, No. 5, 385-391, PMID 9145234
  2. a b Frost H.M.: The Utah Paradigm of Skeletal Physiology Vol. 1, ISMNI, 1960
  3. a b Frost H.M.: The Utah Paradigm of Skeletal Physiology Vol. 2, ISMNI, 1960
  4. Frost H.M.: The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs, J Bone Miner Metab. 2000; 18:305–316, PMID 11052462
  5. Frost H.M., Schoenau E.: The muscle-bone unit in children and adolescents: a overview, 2000, J. Pediatr Endorcrinol Metab 13:571-590, PMID 10905381
  6. Schoenau E., NeuC.M., Beck B., Manz F., Rauch F.: Bone Mineral content per Muscle Cross-Sectional Area as an Index of the Functional Muscle-Bone Unit,J Bone Mineral Res, Vol.17, S.1095-1101, 2002, PMID 12054165
  7. Schießl H., Frost H.M., Jee W.S.S.: Estrogen and BoneMuscle Strength and Mass Relationships, Bone, Vol.22, S.1-6, 1998, PMID 9437507
  8. Eser P. et.al.: Relationship between duration of paralysis and bone structure: a pQCT Study of spinal cord injured individuals, Bone, Vol.34, S.869-880, 2004, PMID 15121019
  9. Eser P. et.al.: Bone Loss and Steady State after Spinal Cord Injury: A Cross Sectional Study Using pQCT, J Muskuloskel Neuron Interact, Vol.4, S.197-198, 2004, PMID 15121019
  10. Blottner D., Salanova M., Püttmann B., Schiffl G., Felsenberg D., Buehring B., Rittweger J.: Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest, Eur J. Appl Physiol, 2006, Vol. 97, S. 261-271, PMID 16568340