Heim

Phosphofructokinase

Phosphofructokinase
Synonyme

Phosphohexokinase; Phosphofructokinase I; Phosphofructokinase (phosphorylierend); 6-Phosphofructose-1-kinase; ATP-abhängige Phosphofructokinase; D-Fructose-6-Phosphat-1-Phosphotransferase; Fructose-6-Phosphatkinase; Fructose-6-Phosphokinase; Nucleotidtriphosphat-abhängige Phosphofructokinase; Phospho-1,6-Fructokinase; PFK

EC-Nummer

2.7.1.11

CAS-Nummer

9001-80-3

Kategorie (Phospho-)Transferase
Substrate ATP + D-Fructose-6-Phosphat
Produkte ADP + D-Fructose-1,6-bisphosphat

Phosphofructokinase (PFK, auch Fructose-6-phosphat-kinase genannt, EC2.7.1.11) ist der zentrale Schalter in der Glykolyse. Die verfügbare Energie der Zelle (ATP, Citrat, NADH/H+) bzw. des Organismus (Blutglucose) wird hier eingestellt.


Inhaltsverzeichnis

Stellung im Energiestoffwechsel

Die doppelte Rolle der Glykolyse besteht in der Sammlung von Bausteinen aus verschiedenen Abbauwegen ("Sammelphase") und der Gewinnung chemischer Energie in Form von ATP ("Gewinnphase"). Zur Erfüllung dieser Bedürfnisse muss der Glucoseumsatz an solchen Enzymen reguliert werden, die "irreversibel" arbeiten und spezifisch für die Glycolyse sind. Prinzipielle Kandidaten hierfür wären die Reaktionen der Phosphofructokinase (PFK) und der Pyruvatkinase (PK); die Hexokinasereaktion scheidet aus, da ihr Produkt, G-6-P ein multifunktioneller Metabolit ist. Als wichtigste Kontrollstelle gilt heute die Phosphofructokinase (PFK), die die (in der Zelle irreversible) Umwandlung von Fructose-6-phosphat in Fructose-1.6-bisphosphat bewerkstelligt. Das Leberenzym, ein 340 kDa Tetramer, wird durch höhere ATP-Konzentrationen inhibiert (Substratinhibition), d.h. die Michaeliskonstante (Km-Wert) des Substrates F-6-P wird erhöht (seine Bindungsstärke erniedrigt).

Diese Eigenschaften der PFKI bilden den wichtigsten Aspekt molekularer Erklärungen des Pasteur-Effektes, wonach bei Umschaltung auf aeroben Stoffwechsel der Metabolitenstrom in der Glycolyse gedrosselt wird, um einen gleich bleibenden Energiestatus der Zelle zu gewähren.

Regulatorfunktionen

Regulation in der Zelle

PFKI besitzt ihr katalytisches Zentrum am N-Terminus, das regulatorische Zentrum am C-Terminus eines durch Genduplikation entstandenen Fusionsproteins. Beide Hälften zeigen infolgedessen Sequenzhomologien, unterlagen aber, entsprechend ihrer Aufgabe, getrennten Optimierungsprozessen:

Regulation im Organismus

Seit längerem ist bekannt, dass PFKI nicht nur durch eines seiner Substrate (ATP) inhibierbar ist, sondern auch durch eines seiner Produkte (F-1,6-BP) in vitro aktiviert werden kann ("verkehrtes Enzym"). In der Zelle tritt der letztere Effekt vermutlich nicht auf, da F-1,6-BP durch Aldolasetätigkeit nie die erforderliche Gleichgewichtskonzentration erreicht. Man fand jedoch, dass ein Isomeres, das Fructose-2,6-bisphosphat (F-2,6-BP), ein physiologischer allosterischer Aktivator ist. F-2,6-BP vermittelt Hungersignale (zu niedriger Blutzucker), die vom Organismus über Glucagon oder Adrenalin ausgesandt werden. Nach Art eines "dritten Messengers" dient es zur Fortpflanzung entlang der Signaltransduktionskette Glucagon - cAMP - PKA (vergl. "second messenger").

F-2,6-BP ist das Produkt einer weiteren, spezialisierten Phosphofructokinase (PFKII). Diese „PFKII“, in Vertebraten ein Fusionsprotein aus Phosphofructokinase und Fructose-2,6-Bisphosphatase, gehört zu den interkonvertierbaren Enzymen, d.h. ihre Aktivität wird durch Proteinkinase A (PKA) und damit indirekt durch hormonelle Signale reguliert: Phosphorylierung eines einzigen Serinrestes schaltet die Kinaseaktivität ab, während gleichzeitig die Phosphataseaktivität angeschaltet wird. Das von Glucagon ausgehende Signal bewirkt also, dass F-2,6-BP nicht mehr verfügbar ist. Hierdurch kommt der Metabolitenstrom der Glykolyse an der PFKI zum Erliegen. In der Leber wird der resultierende G-6-P Stau durch Überführung in Glucose abgebaut (bzw. die Glykolyse durch die Gluconeogenese umgekehrt), die als Neutralmolekül an den Blutkreislauf abgegeben werden kann. Das Glucagonsignal „zu geringer Blutzucker“ ist damit beantwortet.

Das gegenläufige (Insulin-) Signal "zu hoher Blutzucker" wird offenbar durch ein extrem pH-abhängiges Aktivitätsprofil realisiert. Als Antagonist des Glucagons hat das Insulin auch Wirkung auf die F-2,6-BP-Konzentration, indem über Aktivierung einer Phosphodiesterase der cAMP-Spiegel gesenkt und eine Phosphatase aktiviert wird. Diese dephosphoryliert die PFKII, sodass ihre Kinaseaktivität zum Tragen kommt und F-2,6-BP hergestellt wird, das aktivierend auf die PFKI und damit die Glykolyse wirkt. Damit wird die das Signal auslösende, überschüssige Blutglucose abgebaut. Dabei beinhaltet die Aktivierung der PFK1 nicht nur Konformationsänderungen der individuellen Untereinheiten, sondern auch Aggregatbildung zu höheren Oligomeren.

Im Skelettmuskel findet man ein Isoenzym der PFKII mit den gleichen Funktionalitäten, die aber reziprok reguliert werden. D.h. Glucagon stimuliert die Phosphofructokinase (durch Phosphorylierung mittels PKA) und damit über F-2,6-BP die Glykolyse zwecks Energiebereitstellung. Diese Umkehrung der Funktion bietet die Grundlage des Cori-Zyklus, über den bei Muskelaktivität unvollständig oxidiertes Lactat aus der Glykolyse über das Blut zur Leber gebracht wird, wo es (trotz gleicher hormoneller Situation) der Gluconeogenese zugeführt wird.

Phosphofructokinase in der Photosynthese

Bei der Photosynthese entsteht in Pflanzen durch Lichtenergie ATP und NADPH/H+ für Biosynthesen. Gleichzeitig entsteht durch Kohlendioxid-Fixierung (Assimilation) bei C3-Pflanzen 3-Phosphoglycerat (3-PG), ein Intermediat sowohl der Glycolyse als auch der Glucose-Biosynthese (Gluconeogenese). Bei Energieüberschuss ist der letztere Weg gefragt, der schließlich zum Energiespeicher Stärke führt. Verfügbarkeit von 3-PG reguliert (hemmt) PFKII, wodurch die Gluconeogenese ein- die Glycolyse aber ausgeschaltet wird.

Siehe auch: Substratzyklus