Heim

Diskussion:Geradengleichung

Was ist die Formel für die Geradengleichung?

-- Im Text ist für den x-Achsenabschnitt q angegeben, auf dem Bild(2)aber n. Bin mir nicht sicher ob ich das richtig sehe, aber wenn dem so ist sollte jemand das vereinheitlichen. Für Leute, die aus dem Artikel lernen wollen, ist sowas weniger hilfreich.


Gebe ich Dir absolut recht, hat mich auch verwirrt! Ich denke jedoch man sollte im Artikel g:\;y = m\cdot x + b stehen lassen und lieber das Bild anpassen!


Inhaltsverzeichnis

Polarform

Gehört die nicht auch hierhin?

r = x cos(phi) + y sin(phi)

mit

r: Länge des Lots von der Geraden zum Ursprung

phi: Winkel zwischen x-Achse und Lot

Berechnung von n aus der Zweipunkteform fehlt

Es wird gezeigt wie aus der Zweipunkteform m berechnet wird. Die Berechnung von n fehlt aber.

Höherdimensional

Das Beispiel für die "Koordinatenform" zeigt den zweidimensionalen Fall. Ist es prinzipiell möglich, eine Geradengleichung in der Koordinatenform auch für höherdimensionale Fälle aufzustellen?

Danke, --Abdull 18:17, 10. Jul 2006 (CEST)

Die Basisform der Geradengleichung

Die Basisform der Geradengleichung durch P(xp | yp):

Sabotage?

Aus welchem Grund wird die Punk-Steigung-Endformel immer wieder gelöscht? Es sieht so aus, als ob jemand nicht will, dass die Schüler selbstständig die ganze Information bei der Wikipedia finden.

Allgemeine Frage: Wird Wikipedia für Privatinteressen missbraucht (in diesem Fall von den Privatunterrichtlern, sogenannten "Nachhilfelehrern", o.ä.)?

Ganz einfach: es gibt keine "Endformel". Die Punkt-Steigungs-Form steht da, dies in andere vorher bereits genannte Formen umzuformen ist Unsinn. --P. Birken 10:54, 18. Jun. 2007 (CEST)
Nein, kein Unsinn. Ihre Punkt-Steigungs-Form ist noch nicht die fertige Geradengleichung, und viele Schüler haben genau dieses Problem: sie kennen die Steigung und können trotzdem die Geradengleichung nicht aufstellen.

Formatierung

Die im Artikel gewählte Schreibweise ist etwas unglücklich, da sie bei oberflächlicher Betrachtung wie "g:x = c" aussieht (g/x = c). Es wäre besser lesbar, wenn das "g:" ganz wegfällt bzw. deutlich anders formatiert wird(g: x = c).--stefan 22:33, 27. Jun. 2007 (CEST)

Diese Schreibweise ist aber in der Schule üblich. --Digamma 12:04, 2. Dez. 2007 (CET)

Achsenabschnittsform

Mir fehlt eine kurze Beschreibung der Achsenabschnittsform im 2-dimensionalen Raum.--stefan 22:39, 27. Jun. 2007 (CEST)

Sei mutig. --Digamma 12:06, 2. Dez. 2007 (CET)

Überschneidung mit Lineare Funktion

Ich bin ja selber eher Gegner der Brandmarkung von Artikeln mit dem Redundanz-Baustein, aber hier sehe ich doch erhebliche Überschneidungen mit gleich zwei Artikeln: Lineare Funktion und (weniger, da auch mehrdimensional) Lineare Gleichung. Könnte man die alle vielleicht etwas besser voneinander abgrenzen? --PeterFrankfurt 21:26, 25. Okt. 2007 (CEST)

Eine Gerade ist ein geometrisches Objekt, dass durch eine Geradengleichung algebraisch dargestellt werden kann. Eine Gerade ist dann eine Menge von Punkte, die eine Geradengleichung erfüllen. Das ist etwas ganz anderes als eine lineare Funktion. Das ist auch das Problem in Deinem Beispieln, da gehts nämlich um eine lineare FUnktion und den linearen Zusammenhang zwischen Umfang und Radius eines Kreises. Ich habe es entsprechend wieder rausgenommen. --P. Birken 12:34, 27. Okt. 2007 (CEST)
Das Beispiel wollte ich gerne reinbringen, weil es so extrem ist. Es zeigt - für mich - die Konsequenz so einer erstmal abstrakten mathematischen Formel. Ein Standardbeispiel wie vorhanden für den Normalfall und so ein Extrembeispiel zur Öffnung des Blickes für die Verallgemeinerung, das schafft doch das tiefere Verständnis. In diesem Fall eben, dass ein Steigungsdreieck nicht nur in der Umgebung des Ursprungspunkts gilt, sondern auch, wenn man es in der grafischen Darstellung vieltausendfach nach außen weiterschiebt, immer bleibt das Verhältnis gleich. Und das ist eben in dieser grafischen Darstellung des Steigungsdreiecks am besten einsehbar. Dieses spezielle Beispiel weitet in meinen Augen den Blick, der sonst dazu tendiert, sozusagen auf das Maß eines DIN-A4-Millimeterpapierblatts eingeengt zu bleiben, während es hier in die Dimensionen von 10.000 Kilometern und gleichzeitig ein paar handlichen Zentimetern ausgedehnt wird. Wie gesagt, das passt m. E. gerade besser in diesen Artikel hier, wo größerer Wert auf die Grafik gelegt wird, als in den sehr viel abstrakteren Parallelartikel. Oder bist Du der Meinung, dass dieses Beispiel dort gut aufgehoben sein könnte? --PeterFrankfurt 22:12, 27. Okt. 2007 (CEST)
Ja, in Lineare Funktion ist es ganz gut aufgehoben. --P. Birken 11:20, 28. Okt. 2007 (CET)