Heim

Raketenstart

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf bitte mit, ihn zu verbessern, und entferne anschließend diese Markierung.

Während Raketenstarts bei Höhenforschungsraketen oder Feuerwerkskörpern keiner großen Vorbereitung bedürfen, müssen ihnen in der Raumfahrt langwierige Tests und Berechnungen vorausgehen. Dies hängt

Inhaltsverzeichnis

Prinzip eines Raketenstarts

Raketen funktionieren nach dem Rückstoßprinzip, d.h. durch den Ausstoß heißer Gase, die sich nach der Zündung aus dem Brennstoff und dem Oxydator bilden und unter hohem Druck durch die Lavaldüse im Raketenfuß entweichen. Im Gegensatz zu aerodynamischen Flugkörpern arbeitet eine Rakete unabhängig von den Gasen der Erdatmosphäre, wird aber bei deren Durchstoßen von deren Widerstand beeinflusst, der in erster Linie von der Geschwindigkeit und der nach oben abnehmenden Luftdichte abhängt.

Der Raketenschub muss größer als das Startgewicht sein; je größer die Differenz, desto rascher gewinnt die Rakete an Höhe. Die Brenndauer der für Raumfahrt eingesetzten Raketen (deren erste Typen militärische Interkontinentalraketen waren) bzw. der einzelnen Raketenstufen liegt bei einigen Minuten.

Nach dem Durchstoßen der dichten Luftschichten muss die Rakete in horizontale Richtung umgelenkt werden, da zum Erreichen einer Erdumlaufbahn eine horizontale Geschwindigkeit von mindestens 7,8 km/s erforderlich ist (erste kosmische oder Kreisbahngeschwindigkeit, meist als v0 bezeichnet). Zum Erreichen eines anderen Himmelskörpers ist mindestens die zweite kosmische Geschwindigkeit erforderlich (v2), die 200 km über der Erde (niedrigst mögliche Umlaufbahn) bei 11 km/s liegt. Insgesamt muss die Rakete jedoch um einige km/s mehr beschleunigen, weil der Luftwiderstand und das Erdschwerefeld bremsend wirken (siehe charakteristische Geschwindigkeit).

Geschwindigkeiten über 4 km/s sind mit herkömmlichen Brennstoffen nicht direkt erzielbar, sondern nur mit Stufenraketen. Dabei sitzt die zweite Stufe oben auf der ersten und stellt ihre Nutzlast dar, die nach dem Brennschluss der unteren Stufe und deren Abwurf den Flug beschleunigt fortsetzt. Dabei addieren sich die Geschwindigkeiten der einzelnen Stufen gemäß der Raketengrundgleichung.

Die oberste (zweite oder dritte) Raketenstufe trägt die Nutzlast - den/die zu startenden Erdsatelliten, die interplanetare Raumsonde (jeweils durch eine Hülle geschützt) oder die Kapsel mit der Besatzung. Hat die Nutzlast ihre geplante Endgeschwindigkeit erreicht, wird sie von der Raketenstufe abgetrennt; danach fliegen beide auf einer fast identen Bahn, doch wird die ausgebrannte Raketenhülle durch die Teilchen der Hochatmosphäre stärker gebremst als die (kompakte) Nutzlast, sodass sie in eine niedrigere Umlaufbahn gerät und letztere von unten "überholt" und nach einigen Wochen bis Monaten in der tieferen Atmosphäre verglüht. Die Bahn der Nutzlast wird hingegen genau vermessen (siehe Bahnbestimmung und Parkbahn) und - sofern sie Steuerraketen besitzt - durch gezielte kleine Bahnmanöver genau auf den geplanten Orbit oder auf eine Übergangsbahn zu einem anderen Himmelskörper gebracht.

Zu den materiellen und technischen Vorgängen bei Konstruktion, Bau und Betrieb von Raketen siehe Raketentechnik.

Startvorbereitungen in der Raumfahrt (vereinfacht)

Eine für die Raumfahrt geeignete Rakete hat tausende einzelne Komponenten, von deren Zuverlässigkeit der Erfolg eines Raketenstarts abhängt. Zu den rein technischen Antriebs-Aggregaten und Pumpen des Raketenmotors, dem Auftanken der Treibstoff- und Sauerstofftanks, der Haltevorrichtung auf der Startrampe usw. kommen zahlreiche Funk- und Messinstrumente, die für die präzise Steuerung nötige Kreiselstabilisierung und vieles mehr. Alle diese Systeme müssen bis zum Start (und danach) überwacht werden, damit bei ihrem möglichen Versagen der Start abgebrochen werden kann. Zu diesem Zweck dient der Countdown, der einige Tage vor dem Start beginnt und die letzten Stunden zunehmend intensiver wird.

Die wichtigsten Teilaufgaben vor dem Raketenstart und im Countdown sind:

Anzahl der Raketenstarts

Es gab bis 2007 rund 4900 Raketenstarts.

Siehe auch

Raketen und Sicherheit

Flugbahn und Lagekontrolle

Geschichtliches