Heim

Phasenmodulation

Die Phasenmodulation ist ein Verfahren, mit dem ein analoges oder ein digitales Signal über einen Kommunikationskanal übertragen wird. Die Phasenmodulation ist eng verwandt mit der Frequenzmodulation. Beide Modulationen zählen zu der Gruppe der Winkelmodulationsverfahren.

Inhaltsverzeichnis

Analoge Phasenmodulation

Das modulierte Sendesignal kann bei der Phasenmodulation allgemein durch eine Sendefrequenz f0 dargestellt werden, deren Frequenz sich nur dann in gewissem Umfang ändert wenn sich die zu übertragende Nutzsignalfrequenz fs zeitlich verändert. Durch diese Frequenzänderung wird eine Phasenverschiebung vom Sendesignal f0(t) zur ursprünglichen Sendefrequenz f0(t = 0) erreicht. Ist fs zeitlich konstant, wird die Sendefrequenz f0 ausgegeben. Mathematisch lässt sich dieser Zusammenhang folgendermaßen mit beliebiger reeller Konstante k beschreiben:

k ist ein Faktor, welcher angibt, wie stark sich die Phase des Sendesignals in Abhängigkeit vom Nutzsignal ändern soll, und ist eine Art Phasenmodulationsindex. Der Ausdruck fs'(t) beschreibt die zeitliche Ableitung des zu übertragenen Nutzsignals. Das modulierte Sendesignal ergibt sich damit zu:

Den zweiten Summanden kann man sich anschaulich so vorstellen: die Momentanwerte zu bestimmten Zeitpunkten des Nutzsignals fs(t) verstellen quasi den Phasenwinkel der Kosinus-Funktion, wovon sich auch der Name dieser Modulationsart ableitet.

Praktische Anwendungen

Im Gegensatz zur analogen Frequenzmodulation erlangte die analoge Phasenmodulation kaum wesentliche praktische Anwendungsbereiche. Der Grund liegt darin, dass der Empfänger zum Empfang die korrekte Phasenlage des ursprünglichen Sendesignals behalten muss, also wie bei digitalen Verfahren am Anfang einer Übertragung eine Art Synchronisation und Gleichstellung der Referenzphase notwendig ist. Diese Referenzphase beim Empfänger konstant zu halten, ist in analogen Schaltungstechnik aufwendig und nicht besonders stabil, während bei der Frequenzmodulation einfach das Fehlersignal einer PLL als Demodulator beim Empfänger ohne großen Aufwand verwendet werden kann. Die Phasenmodulation erlangte daher erst bei digitalen Übertragungsverfahren, wo die Synchronisation und Demodulation mittels einer Costas Loop gelöst werden kann, wesentliche Bedeutung für die praktische Anwendung.

Digitale Phasenmodulation

Bei digitalen Signalen spricht man von Phasenumtastung, engl. Phase Shift Keying. Dabei wird die Phase einer Sinusschwingung (Träger) durch Phasenverschiebung moduliert. Man spricht von binärer Phasenmodulation, BPSK, wenn zwischen zwei Phasenlagen umgeschaltet (umgetastet) wird. Typischerscherweise entsprechen die Phasenlagen 0° und 180° den binären Zuständen "0" und "1".

Bei einer mehrstufigen Phasenmodulation repräsentiert ein Symbol eine Folge mehrerer Bits. Bei 4-PSK (bzw. QPSK) werden pro Symbol 2 Bit, bei 8-PSK pro Symbol 3 Bit, etc. übertragen. 4-PSK wird zum Beispiel bei der Übertragung von Faximiles über das Telefonnetz verwendet. Bei der GSM-Erweiterung EDGE (Enhanced Data Rates for GSM Evolution) wird beispielsweise 8-PSK eingesetzt und damit die Bruttoübertragungsrate gegenüber einer binären Modulation verdreifacht.

Dargestellt als ein Paar von Spektrallinien im zweiseitigen komplexen Frequenzspektrum (siehe Abbildung), bewirkt die Phasenmodulation eine Rotation des Trägers um die Frequenzachse. Bei PSK kann man den Träger durch Auswahl einer von zwei Phasenlagen (0° und 180°) auf zwei Punkte zeigen lassen. Bei 4-PSK sind das vier Punkte (45°, 135°, 225° und 315°) und bei 8-PSK acht. Die Punkte sind dabei gleichmäßig auf einem Kreisbogen verteilt.

Wird die Phasenmodulation mit der Amplitudenmodulation kombiniert, dann entsteht Quadraturamplitudenmodulation (QAM), also eine Kombination aus ASK (Amplitudenumtastung bzw. Amplitude Shift Keying) und PSK. Im Frequenzspektrum entspricht das einer zusätzlichen Modulation der Länge der Spektrallinien.

Phasenmodulation kann auf mehreren Frequenzen gleichzeitig geschehen (COFDM, Discrete Multitone).

Wird die Information so kodiert, dass nur Bitänderungen übertragen werden, spricht man von Differential Phase Shift Keying (DPSK). Nur der Wechsel von einer logischen „1” zu einer logischen „0” oder umgekehrt bewirkt bei der Modulation einen Phasensprung. Findet kein Phasensprung statt, bleibt die letzte Information gültig.

Bei Symmetrical Differential Phase Shift Keying (SDPSK) ist die Phasenverschiebung symmetrisch. Eine positive Phase von 90° entspricht dem Bit 1, eine negative Phase von 90° dem Bit 0.

Beispiele

 Fax-Tonsignal (siehe Text) ?/i

Das Tonbeispiel ist die Antwort eines Faxes, wenn es angerufen wird. Das erste Signal ist ein reiner Sinuston, dem mehrfach ein Knackgeräusch überlagert ist. Dabei handelt es sich um eine Phasenschiebung um 180°, siehe Bild. Sie kann genau eine Information, ein Bit, speichern. Sie heißt deshalb binäre Phasenschiebung (binary phase shift keying).

Bei einer Phasenschiebung um 90° lassen sich 4 verschiedene Zustände kodieren: 0°, +90°, -90°, und 180° (quadrature phase-shift keying oder quaternary phase-shift keying oder QPSK). Bei Vielfachen von 45° sind es 8 Zustände bzw. 3 Bit (octal phase-shift keying oder OPSK). Allgemein spricht man von multiple phase-shift keying oder MPSK.