Heim

Dreieck

Dieser Artikel behandelt den geometrischen Begriff Dreieck; zu weiteren Bedeutungen siehe Dreieck (Begriffsklärung).

Ein Dreieck ist ein Polygon und eine geometrische Figur. Es handelt sich innerhalb der euklidischen Geometrie um die einfachste Figur in der Ebene, die von geraden Linien begrenzt wird. Seine Begrenzungslinien bezeichnet man als Seiten. In seinem Inneren spannen sich drei Winkel, die sogenannten Innenwinkel auf. Die Scheitel dieser Winkel bezeichnet man als Eckpunkte des Dreiecks. Auch eine Verallgemeinerung des Dreiecksbegriffes auf nichteuklidische Geometrien ist möglich.

In der Trigonometrie, einem Teilgebiet der Mathematik, spielen Dreiecke die wesentliche Rolle. Siehe dazu insbesondere Dreiecksgeometrie.

Inhaltsverzeichnis

Einteilung

nach Winkeln:

nach Seitenlängen:

Das allgemeine (beliebige) Dreieck

Definition und Eigenschaften

Ein Dreieck wird durch drei Punkte definiert, die nicht auf einer Geraden liegen. Sie werden Ecken des Dreiecks genannt. Die Verbindungsstrecken zwischen je zwei Ecken heißen Seiten des Dreiecks. Das Dreieck unterteilt die Ebene in zwei Bereiche, das Äußere und das Innere des Dreiecks. Der von je zwei an einem Eckpunkt zusammentreffenden Seiten gebildete Winkel ist eine wichtige Größe zur Charakterisierung des Dreiecks.

In der Geometrie werden die Eckpunkte des Dreiecks in der Regel mit A, B und C bezeichnet, üblicherweise so wie abgebildet, gegen den Uhrzeigersinn. Die Seite, die einer Ecke gegenüberliegt, wird analog a, b bzw. c genannt. Damit liegt z. B. die Seite a dem Eckpunkt A gegenüber, verbindet also die Punkte B und C. Häufig wird mit a, b und c auch stattdessen die Länge der jeweiligen Seite BC, CA oder AB bezeichnet. Die Winkel werden α, β und γ genannt; α ist der Winkel am Eckpunkt A, β liegt am Eckpunkt B und γ liegt am Eckpunkt C

Diese intuitiv einsichtigen Eigenschaften ebener Dreiecke folgen aus den Axiomen der euklidischen Geometrie.

Berechnung eines beliebigen Dreiecks

Ein Dreieck besitzt drei Seiten und drei Innenwinkel. Liegen drei Angaben über Seiten oder Winkel vor, so können die drei jeweils fehlenden Winkel bzw. Seiten berechnet werden. Je nachdem, welche Kombination von Seiten und Winkeln vorliegt, ist das Ergebnis für die fehlenden Angaben eindeutig. Die Kongruenzsätze liefern die eindeutigen Lösungsfälle und werden symbolisch mit SSS, SSW, SWS, WSW bezeichnet, wobei S für Seiten und W für Winkel stehen.

Der Fall SSW ist allerdings nur dann eindeutig, wenn der Winkel der größeren Seite gegenüber liegt. Wenn der Winkel der kleineren gegebenen Seite gegenüber liegt, kann es keine, eine oder zwei Lösungen geben.

Die Fälle WWS und SWW können durch Drehung oder Umbenennung des Dreiecks auf den Fall WSW zurückgeführt werden.

Der Fall WWW ist bei ebenen Dreiecken nicht eindeutig lösbar, weil es de facto nur zwei Angaben sind, denn über die Winkelsumme im Dreieck () lässt sich aus zwei bekannten Winkeln immer der dritte bestimmen. Ohne gegebene Seite ist zwar die Form des Dreiecks gegeben, seine Größe bleibt aber offen.

Für Berechnungen ist neben der Winkelsumme der Sinussatz und der Kosinussatz am wichtigsten; zusätzlich kennt man den Projektionssatz sowie Tangenten- und Halbwinkelsätze.

Den Sinussatz gibt es in drei Varianten, von denen sich aber die dritte aus den beiden anderen ergibt:

wobei r den Umkreisradius bezeichnet.

Der Kosinussatz ist eine verallgemeinerte Form des Satz des Pythagoras, mit dem sich die Seiten eines beliebigen Dreiecks berechnen lassen:

Wenn nur die Seiten a, b und c bekannt sind, ergibt sich die Lösung über den Arkuskosinus (arccos):

Umfang:
Inkreisradius:
Umkreisradius:
Höhenformeln:
Flächeninhalt:

Heronsche Flächenformel: wobei ist
Flächenschwerpunkt:

Spezielle Dreiecke

Das unregelmäßige Dreieck

Das gleichseitige Dreieck

Eigenschaften

Formeln

Für ein gleichseitiges Dreieck mit der Seitenlänge a gilt:

Fläche
Höhe
Umkreisradius
Inkreisradius
Umfang

Beweis siehe Weblinks unten.

Das gleichschenklige Dreieck

Das rechtwinklige Dreieck

Satz des Pythagoras c2 = a2 + b2
Kathetensatz von Euklid
c = p + q
Höhensatz von Euklid

Bei Kenntnis zweier der sechs Angaben (a, b, c, p, q und h) lassen sich die fehlenden vier anderen Werte aus den in der Tabelle aufgeführten Formeln berechnen.

Die Längen der drei Seiten werden durch den Satz des Pythagoras in Beziehung gebracht: Das Quadrat der Länge der Hypotenuse (in der Grafik als c bezeichnet) gleicht der Summe der Quadrate der Längen der Katheten (a und b).

In Bezug auf einen der spitzen Winkel des Dreiecks bezeichnet man die dem Winkel anliegende Kathete als Ankathete und die dem Winkel gegenüberliegende Kathete als Gegenkathete. Durch das Verhältnis zwischen Katheten und Hypotenuse lassen sich auch die beiden spitzen Winkel des rechtwinkligen Dreiecks eindeutig bestimmen.

Funktion Berechnung
Der Sinus des Winkels α ist dabei als das Verhältnis zwischen der Gegenkathete (hier: a) und der Hypotenuse (hier: c) definiert.
Der Kosinus des Winkels α ist das Verhältnis zwischen der Ankathete (hier: b) und der Hypotenuse.
Der Tangens ist durch das Verhältnis zwischen Gegenkathete und Ankathete gegeben.
Der Kotangens ist das Verhältnis zwischen Ankathete und Gegenkathete, und ist damit der Kehrwert des Tangens.
Der Sekans ist das Verhältnis der Hypotenuse zur Ankathete, also der Kehrwert des Kosinus.
Der Kosekans ist das Verhältnis der Hypotenuse zur Gegenkathete, d. h. der Kehrwert des Sinus.

Diese sechs Funktionen werden Winkelfunktionen oder trigonometrische Funktionen genannt; im schulischen Kanon werden diese jedoch meistens auf die ersten drei reduziert (diese sind auch die geläufigsten, die anderen sind von geringerer Bedeutung).

Weiterführend gibt es noch den Arkussinus, Arkuskosinus und Arkustangens, die beispielsweise bei manchen Berechnungen mit komplexen Zahlen benötigt werden.

Dreiecke der nichteuklidischen Geometrie

Sphärische Dreiecke

Hauptartikel: Kugeldreieck

Dreiecke auf der Kugel nennt man sphärisch, wobei die drei Seiten Teile von Großkreisen sind. Ihre Seitenlänge wird nicht in der Dimension einer Länge angegeben (Meter, cm usw.), sondern als zugehöriger Winkel im Kugelmittelpunkt.

Ein sphärisches Dreieck hat eine Winkelsumme größer als 180°, wobei der „Überschuss“ sphärischer Exzess heißt und in Formeln meist als bezeichnet wird: .

Der Exzess hängt direkt mit dem Flächeninhalt des Dreiecks zusammen (, bzw. in Grad ), worin R den Kugelradius und π die Kreiszahl 3,14159… bedeutet.
Der maximale Exzess von 360° tritt beim einem „Dreieck“ mit drei auf 180° gestreckten Winkeln auf. Dieses zum Großkreis entartete Dreieck hat die Winkelsumme 540° (drei mal 180°) und ε = 540° − 180° = 360°. Sphärische Dreiecke können analog den ebenen Dreiecken berechnet werden, wofür es in der Geodäsie z. B. den sphärischen Sinussatz, den Cosinussatz, den Projektionssatz und verschiedene Halbwinkelsätze gibt – siehe Sphärische Trigonometrie.

Hyperbolische Dreiecke

Zur nichteuklidischen Geometrie – in der das Parallelenaxiom nicht gilt – zählen z. B. auch Dreiecke auf einer Sattelfläche. Während eine Kugel überall konvex gekrümmt ist, haben Sattel- und andere hyperbolische Flächen sowohl konvexe als auch konkave Krümmung (ihr Produkt, das Krümmungsmaß, ist negativ).

Entsprechend ist auch der Exzess negativ – d. h. die Winkelsumme eines Dreiecks auf einer Sattelfläche ist kleiner als 180°. Die Kongruenzsätze machen Aussagen über die Dreiecksgrößen (Seitenlänge, Winkel), die notwendig sind, um ein Dreieck eindeutig zu bestimmen.

Oft auftretende Dreiecksgrößen

Interessant sind auch die Schnittpunkte dieser Linien bzw. die Mittelpunkte der Kreise, die als ausgezeichnete oder merkwürdige Punkte des Dreiecks bekannt sind.

Sätze rund um das Dreieck

Siehe auch

 Commons: Category:Triangles – Bilder, Videos und Audiodateien
 Wiktionary: Dreieck – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik
 Wikibooks: Mathematik: Schulmathematik: Trigonometrie – Lern- und Lehrmaterialien
 Wikibooks: Gleichseitiges Dreieck – Lern- und Lehrmaterialien

Literatur