Heim

Euklidischer Ring

Euklidischer Ring ist ein Fachbegriff aus der Mathematik und bezeichnet einen Ring, in dem eine (verallgemeinerte) Division mit Rest vorhanden ist, wie man sie von den ganzen Zahlen kennt. Die Möglichkeit der Division mit Rest wird dabei durch die Existenz einer geeigneten Bewertungsfunktion gesichert.

Inhaltsverzeichnis

Definitionen

Es gibt in der Literatur und in der akademischen und wissenschaftlichen Praxis eine ganze Reihe verschiedener, aber ähnlicher Definitionen eines euklidischen Ringes. Oft sind darin bereits speziellere Eigenschaften enthalten, was z. B. Erleichterungen in der Formulierung der im Weiteren aufgespannten Theorie bringen kann. All diesen Definitionsvarianten ist jedoch gemeinsam, dass ein euklidischer Ring eine Division mit Rest und dadurch einen euklidischen Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier Ringelemente liefert. Von dieser Eigenschaft ist der Name abgeleitet.

Variante 1

Ein Integritätsbereich R (= Integritätsring, also ein kommutativer, nullteilerfreier Ring mit 1) heißt euklidischer Ring, falls eine Bewertungsfunktion existiert mit folgenden Eigenschaften:

Die Abbildung g heißt dabei euklidische Normfunktion (euklidischer Betrag) des Ringes.

Variante 2

Die obenstehende Definition ist fast äquivalent zu der folgenden, ebenfalls häufig verwendeten, in der jedoch zusätzlich eine Bewertung für die Null vorgegeben wird.

Definition:
Ein Integritätsbereich R heißt euklidischer Ring, falls eine Bewertungsfunktion existiert mit folgenden Eigenschaften:

Variante 3

Es gibt auch noch eine weitere wesentlich allgemeinere, aber seltener verwendete Variante, in der die Bewertungsfunktion reellwertig ist.

Definition[1]:
Ein Integritätsbereich R heißt euklidischer Ring, falls eine Wertefunktion (bzw. Bewertungsfunktion) existiert mit folgenden Eigenschaften:

Variante 4

Ein besonders schwache Variante liefert die folgende

Definition[2]:
Ein Integritätsring R (hier nur: ein kommutativer, nullteilerfreier Ring mit wenigstens einem von Null verschiedenem Element) heißt euklidischer Ring, falls eine Gradfunktion existiert mit folgenden Eigenschaften:

Eigenschaften

Beispiele für euklidische und nicht euklidische Ringe

Einzelnachweise

  1. Bernhard Hornfeck: Algebra. S. 142 3.Auflage deGruyter 1976. ISBN 3110067846
  2. Kurt Meyberg: „Algebra – Teil 1“, Carl Hanser Verlag München, Wien.

Literatur