Heim

Tsunami

Dieser Artikel beschreibt das naturwissenschaftliche Phänomen Tsunami; zu dem gleichnamigen Spielfilm siehe Tsunami (Film).

Ein Tsunami (jap. 津波, Hafenwelle; aus , tsu, Hafen, und , nami, Welle) ist eine sich schnell fortpflanzende Meereswoge, die überwiegend durch Erdbeben auf dem Meeresgrund (oft auch als „Seebeben“ bezeichnet) ausgelöst wird.

Tsunamis werden oft als Flutwellen bezeichnet; ihre Entstehung hat jedoch nichts mit den tageszeitlichen Wechseln zwischen Ebbe und Flut (Gezeiten) zu tun; ebenso wenig werden Tsunamis durch Wind verursacht. Tsunamis sind nicht mit so genannten Riesen- oder Monsterwellen zu verwechseln.

Auf offenem Meer werden Tsunamis kaum bemerkt, in Ufernähe jedoch können starke Tsunamis weiträumige katastrophale Schäden verursachen und ganze Küstenstriche verwüsten. Solche Erscheinungen zählen zu den Naturkatastrophen.

Inhaltsverzeichnis

Etymologie

Der Begriff Tsunami wurde durch japanische Fischer geprägt, die vom Fischfang zurückkehrten und im Hafen alles verwüstet vorfanden, obwohl sie auf offener See keine Welle gesehen oder gespürt hatten. Das liegt daran, dass Japan eine Tiefseesteilküste hat. Die Riesenwellen bilden sich quasi erst kurz vor dem Strand und schlagen deshalb über die Hafenmauer in den Hafen, wo sie die Schiffe zertrümmern.

Eine Reihe verheerender Tsunamis zwischen 1945 und 1965 machte dieses Naturphänomen weltweit bekannt und bildete die Grundlage für wissenschaftliche Arbeiten, in deren Folge sich die japanische Bezeichnung als Internationalismus durchsetzte.

Entstehung

Etwa 86 % aller Tsunamis werden durch Hebungen und Senkungen nach Erdbeben verursacht, die restlichen entstehen durch die abrupte Verdrängung großer Wassermassen, bedingt durch Vulkanausbrüche, küstennahe Bergstürze, Unterwasserlawinen oder Meteoriteneinschläge. Auch Nuklearexplosionen können Tsunamis auslösen. Tsunamis treten mit 79% am häufigsten im Pazifik auf: Am Rand des Stillen Ozeans, in der Subduktionszone des Pazifischen Feuerrings, schieben sich tektonische Platten der Erdkruste (Lithosphäre) übereinander, wodurch Vulkanismus, See- und Erdbeben verursacht werden.

Ein Erdbeben kann nur dann einen Tsunami verursachen, wenn alle drei folgenden Bedingungen gegeben sind:

Nur ein Prozent der Erdbeben zwischen 1860 und 1948 verursachten messbare Tsunamis. Da sich die leichte Erdbewegung aber über das Medium Wasser weit ausbreiten kann, sind größere Schäden als bei gleich starken Beben an Land möglich.

Möglich ist auch, dass nicht die unmittelbar durch das Erdbeben bedingte Bewegung des Meeresbodens, sondern ein durch das Erdbeben ausgelöster unterseeischer Hangrutsch den Tsunami verursacht. In einem solchen Fall können schon relativ kleine (Magnitude 7) Erdbeben einen Tsunami nach sich ziehen.

Ausbreitung

Tsunamis unterscheiden sich grundlegend von Wellen, die durch Stürme entstehen, denn bei diesen kann das Wasser zwar unter außerordentlichen Bedingungen bis zu 30 Meter hoch aufgeworfen werden, die tieferen Wasserschichten bleiben dabei jedoch unbewegt. Bei einem Tsunami bewegt sich dagegen das gesamte Wasservolumen, also die gesamte Wassersäule vom Meeresboden bis zur Meeresoberfläche.

Tsunamis sind Schwerewellen

Grundsätzlich repräsentiert eine Welle keine Bewegung von Wasser, sondern Bewegung von Energie durch Wasser. Aus physikalischer Sicht ist Wellenausbreitung immer dann möglich, wenn eine Auslenkung aus einer Gleichgewichtslage, in diesem Fall ein Anstieg oder Abfall des Wasserspiegels, eine entgegengerichtete Rückstellkraft zur Folge hat. Bei Ozeanwellen wirkt als Rückstellkraft die Schwerkraft, die auf eine möglichst horizontale Wasseroberfläche hinarbeitet. Aus diesem Grund werden Tsunamis zu den Schwerewellen gezählt. Ein Tsunami ist also insbesondere keine Druck- und keine Schallwelle; Kompressibilität, Viskosität und Turbulenz sind nicht relevant. Um die Physik eines Tsunami zu verstehen, genügt es, die Potentialströmung einer idealen, also reibungsfreien, inkompressiblen und wirbelfreien Flüssigkeit zu betrachten. Mathematisch werden Tsunamis durch die Soliton-Lösungen der Korteweg-de-Vries-Gleichung beschrieben.

Die Theorie der Schwerewellen vereinfacht sich in den beiden Grenzfällen der Tief- und der Flachwasserwelle. Normale Wellen, die beispielsweise durch Wind, fahrende Schiffe oder ins Wasser geworfene Steine verursacht werden, sind meist Tiefwasserwellen, da sich ihre Wellenbasis in der Regel über dem Grund des Gewässers befindet, also dort, wo die Welle keine Auswirkungen mehr hat. Ein Tsunami hingegen ist auch im tiefsten Ozean eine Flachwasserwelle, da die gesamte Wassersäule bewegt wird und sich auch am Ozeanboden eine langsamere Bewegung in Richtung der Wellenausbreitung feststellen lässt. Dieser Charakter ergibt sich daraus, dass bei Tsunamis die Wellenlänge (Entfernung von einem Wellenberg zum nächsten) viel größer ist als die Wassertiefe. Dadurch wird auch eine wesentlich größere Wassermenge transportiert.

Ein Tsunami wird vereinfacht durch zwei Grundparameter beschrieben:

Während der Ausbreitung eines Tsunami bleiben diese beiden Parameter weitgehend konstant, da wegen der großen Wellenlänge die Energieverluste durch Reibung vernachlässigbar sind.

Tsunamis seismischer Natur weisen lange Wellenperioden auf, die sich zwischen zehn Minuten und zwei Stunden bewegen. Durch andere Ereignisse als Erdbeben erzeugte Tsunamis haben oft kürzere Wellenperioden im Bereich von einigen Minuten bis zu einer Viertelstunde. Andere Eigenschaften wie die Wellenhöhe und -länge oder die Ausbreitungsgeschwindigkeit hängen neben den beiden Grundparametern nur von der Meerestiefe ab.

Geschwindigkeit

Die Geschwindigkeit eines Tsunami hängt von der Meerestiefe ab; je tiefer das Meer, desto schneller, und je flacher, desto langsamer ist der Tsunami. Die Geschwindigkeit c einer Tsunamiwelle (genauer: die Phasengeschwindigkeit) ergibt sich aus der Wurzel des Produktes von Erdbeschleunigung g und Wassertiefe h; also

bzw. als Zahlenwertgleichung in alltäglichen Einheiten

.

Die Ausbreitungsgeschwindigkeit beträgt somit in Ozeanen (Wassertiefe ca. 5000 m) ca. 800 km/h. Das ist vergleichbar mit der Reisegeschwindigkeit eines Flugzeuges. Tsunamis können also binnen einiger Stunden ganze Ozeane durchqueren und sich bis zu 20.000 km ausbreiten, ohne dabei unmittelbar bemerkt zu werden. Bei vom Wind erzeugten Wellen dagegen liegen die Geschwindigkeiten zwischen 8 und 100 km/h. Bei niedriger Wassertiefe, also in Küstennähe, verlangsamt sich der Tsunami, wie auf nebenstehender Animation zu sehen ist. Damit verringert sich auch die Wellenlänge, wodurch es zu einem Anstieg der Wellenhöhe und schließlich zum Brechen der Welle kommt.

Schwerewellen kommen durch die gleichtaktige Bewegung großer Wassermassen zustande. Jedes einzelne Teilvolumen des Wassers bewegt sich dabei nur um winzige Beträge. Für eine Flachwasser-Schwerewelle mit der Amplitude a in einem Gewässer der Tiefe h kann man das sogar quantitativ angeben: Die Geschwindigkeit, mit der sich die an der Welle beteiligte Materie zirkulär bewegt, ist um einen Faktor a/h kleiner als die Phasengeschwindigkeit der Welle. Für einen großen Tsunami liegt dieser Faktor in der Größenordnung 10-5: Wenn sich eine Welle im offenen Meer mit c = 200 m/s ausbreitet, bewegen sich die Wasserelemente nur mit 2 mm/s, was gegenüber Strömungen und Windwellen völlig vernachlässigbar und nicht direkt beobachtbar ist.

Wellenlänge

Tsunamis sind, da ihre Wellenlänge λ viel größer als die Meerestiefe h ist, so genannte Flachwasserwellen oder Oberflächenwellen. Typische Wellenlängen bei Tsunamis liegen zwischen 100 und 500 km. Die Wellenlängen von winderzeugten Wellen erreichen dagegen nur zwischen 100 und 200 Meter. Allgemein gilt für Wellen die Beziehung zwischen Geschwindigkeit c, Wellenlänge λ und Wellenperiode T

,

Mit der Tsunamigeschwindigkeit von oben und der Angabe der Wellenlänge können typische Wellenperioden über:

errechnet werden zu:

Die Zeit T ist die Zeit, die bis zum Eintreffen der zweiten Welle vergeht.

Je größer die Wellenlänge, desto geringer sind die Energieverluste während der Wellenausbreitung. Bei kreisförmiger Ausbreitung ist die Energie, mit der eine Welle auf einen Küstenstreifen auftrifft, in erster Näherung umgekehrt proportional zum Abstand vom Entstehungsort des Tsunami.

Amplitude

Die Wellenhöhe (Amplitude) A des Tsunami hängt von der Energie E und der Wassertiefe h ab. Bei Tsunamis mit großer Wellenlänge gilt:

.

Dies bedeutet, dass die Amplitude A bei geringerer Wassertiefe h zunimmt. Im offenen Meer nimmt sie, da der Tsunami eine Oberflächenwelle ist, mit zunehmender Entfernung r nur um den Faktor ab (Kugelwellen, die sich in die Tiefe ausbreiten, nehmen um den Faktor 1 / r ab). Dies kann man sich veranschaulichen, wenn man einen Stein in eine flache Pfütze wirft. Die Amplitude der Wasserwellen nimmt nur merklich ab, da sich die Energie kreisförmig über einen größeren Wellenkamm verteilt. Der Energieverlust durch die innere Reibung der Wassermoleküle ist verschwindend gering und der Impuls wird nahezu ungeschwächt an die benachbarten Wassermoleküle weitergegeben. Die Energie einer Tsunamiwelle schwächt sich im offenen Meer nur durch ihre geometrische Ausbreitung ab. Tsunamiwellen können daher die Erdkugel mehrfach umrunden. Bei Tsunamis kleinerer Wellenlänge – meist nicht von Erdbeben verursacht – kann die Amplitude mit der Entfernung wesentlich schneller abnehmen.

Auf dem offenen Ozean beträgt die Amplitude selten mehr als einige Dezimeter. Der Wasserspiegel wird somit nur langsam und nur um einen geringen Betrag angehoben und wieder abgesenkt, weshalb das Auftreten eines Tsunami auf offener See meist gar nicht bemerkt wird.

Die Zerstörungskraft eines Tsunami wird nicht grundsätzlich durch seine Amplitude, sondern durch die Wellenperiode sowie durch die transportierte Wassermenge bestimmt.

Auftreffen auf die Küste

Erhöhung der Amplitude

In Küstennähe wird das Wasser flach. Das hat zur Folge, dass Wellenlänge und Phasengeschwindigkeit abnehmen, die Amplitude der Welle und die Geschwindigkeit der beteiligten Materie aber zunehmen. Die Energie der Tsunamiwelle wird dadurch immer stärker konzentriert, bis sie mit voller Wucht auf die Küste auftrifft. Der Energiegehalt eines Wellenzuges ergibt sich als Querschnitt mal Wellenlänge mal Teilchengeschwindigkeit-zum-Quadrat und ist in erster Näherung unabhängig von h.

Typische Amplituden beim Auftreffen eines Tsunami auf die Küste liegen in einer Größenordnung von 10 Metern; am 24. April 1971 wurde in der Nähe der japanischen Insel Ishigaki von einer Rekordhöhe von 85 Metern in flachem Gelände berichtet. In Ufernähe einer Tiefseesteilküste kann die Amplitude auf etwa 50 Meter ansteigen. Läuft ein Tsunami in einen Fjord, so kann sich die Welle auf weit über 100 Meter aufstauen.

In einem Fjord in Alaska wurden mehrere Wellen mit rund 150 Metern und sogar eine mit bis zu 530 Metern Höhe nachgewiesen (Megatsunami). Diese gigantischen Wellen entstanden jedoch nicht als Fernwirkung eines Erdbebens, sondern durch Wasserverdrängung im Fjord selbst: Heftige Erdbeben ließen Berghänge in den Fjord rutschen und brachten diesen schlagartig zum Überlaufen.

Brechungseffekte

Die Änderung der Wellenausbreitungsgeschwindigkeit bei Annäherung des Tsunami an die Küste hängt vom Tiefenprofil des Meeresbodens ab. Je nach örtlichen Gegebenheiten kann es zu Brechungseffekten kommen: So wie Licht beim Übergang von Luft in Wasser oder Glas seine Richtung ändert, so ändert auch eine Tsunamiwelle ihre Richtung, wenn sie schräg durch eine Zone läuft, in der sich die Meerestiefe ändert. Je nach Ursprungsort des Tsunami und Unterwassertopographie kann es dabei zur Fokussierung des Tsunami auf einzelne Küstenbereiche kommen. Dieser Effekt ist von der Trichterwirkung eines Fjords nicht scharf zu trennen und kann sich mit dieser überlagern.

Zurückweichen des Meeres

Wie ein akustisches Signal, so besteht auch ein Tsunami nicht aus einer einzelnen Welle, sondern aus einem ganzen Paket von Wellen mit unterschiedlichen Frequenzen und Amplituden. Wellen unterschiedlicher Frequenz breiten sich mit leicht unterschiedlicher Geschwindigkeit aus. Deshalb addieren sich die einzelnen Wellen eines Paketes in von Ort zu Ort und von Minute zu Minute unterschiedlicher Weise. Je nach Ursache kann ein Tsunami an einem Punkt der Küste zuerst als Wellenberg oder zuerst als Wellental beobachtet werden. Ist die Ursache des Tsunami ein Hangabrutsch oder Herunterbrechen einer Kontinentalplatte, so wird Wasser zur Sohle hin beschleunigt. Wasser wird verdrängt, und es entsteht zunächst ein Wellental. Danach bewegt sich das Wasser wieder zurück, und der Wellenberg entsteht. Beim Eintreffen der Welle an der Küste zieht sich zunächst die Küstenlinie zurück, unter Umständen um mehrere 100 Meter. Wenn der Tsunami eine unvorbereitete Bevölkerung trifft, kann es geschehen, dass die Menschen durch das ungewöhnliche Schauspiel des zurückweichenden Meeres angelockt werden, statt dass sie die verbleibenden Minuten bis zur Ankunft der Flutwelle nutzen, um sich auf höher gelegenes Gelände zu retten.

Stokes-Strömung

Wenn die Amplitude eines Tsunami in der Nähe der Küste nicht mehr gegen die Wassertiefe vernachlässigbar ist, so wandelt sich ein Teil der Schwingung des Wassers in eine allgemeine horizontale Bewegung um, genannt Stokes-Strömung. In unmittelbarer Küstennähe ist eher diese schnelle Horizontalbewegung als das Ansteigen des Wasserspiegels für die Zerstörung verantwortlich.

In Küstennähe hat die Stokes-Strömung eine theoretische Geschwindigkeit von:

, also
.

Die Stokes-Strömung erreicht somit mehrere Dutzend km/h.

Gefahren und Schutz

Tsunamis zählen zu den verheerendsten Naturkatastrophen, mit denen der Mensch konfrontiert werden kann, denn ein mächtiger Tsunami kann seine zerstörerische Energie über Tausende von Kilometern weit mitführen oder sogar um den ganzen Erdball tragen. So wird ein Tsunami als Auslöser für die biblische Sintflut vermutet. Ohne schützende Küstenfelsen können schon drei Meter hohe Wellen mehrere hundert Meter tief ins Land eindringen. Die Schäden, die ein Tsunami beim Vordringen verursacht, werden noch vergrößert, wenn die Wassermassen wieder abfließen. Die Gipfelhöhe eines Tsunami hat nur bedingte Aussagekraft über seine Zerstörungskraft. Gerade bei niedrigen Landhöhen kann auch eine niedrige Wellenhöhe von nur wenigen Metern ähnliche Zerstörungen wie ein großer Tsunami mit über 31 Metern anrichten.

Am 26. Dezember 2004 wurden durch den wohl bisher größten Tsunami in Südostasien mindestens 231.000 Menschen getötet. Ausgelöst wurde die Welle durch eines der stärksten Erdbeben seit Beginn der Aufzeichnungen. Die verheerende Wirkung beruhte hier vor allem auf dem großen Wasservolumen, das pro Kilometer Küstenlinie auf das Land traf, während die Wellenhöhe mit zumeist nur wenigen Metern vergleichsweise niedrig war.

Gefahrenzonen

Die häufigsten Tsunamis entstehen am westlichen und nördlichen Rand der pazifischen Platte, im Pazifischen Feuerring.

Japan musste aufgrund seiner geografischen Lage in den letzten tausend Jahren die meisten Todesopfer durch Tsunamis beklagen; in dieser Zeit starben über 160.000 Menschen. In den letzten 100 Jahren richteten jedoch nur 15 Prozent der 150 registrierten Tsunamis Schäden an oder kosteten Menschenleben. Heutzutage verfügt Japan über ein effektives Frühwarnsystem, und für die Bevölkerung finden regelmäßig Trainingsprogramme statt. Viele japanische Küstenstädte schützen sich durch das Errichten riesiger Deiche, z. B. ein 10 Meter hoher und 25 Meter breiter Wall auf der Insel Okushiri.

In Indonesien dagegen wirkt heute noch die Hälfte der Tsunamis katastrophal, denn die meisten Küstenbewohner sind über die Anzeichen, die einen Tsunami ankündigen, nicht informiert. Meistens ist auch das Land sehr flach und die Wassermassen fließen bis ins Landesinnere (siehe auch Seebeben im Indischen Ozean 2004 und Seebeben vor Java Juli 2006). Indonesien liegt in einem sogenannten „Ring of Fire“, was bedeutet, dass es von Vulkanen (potentielle Auslöser) umgeben ist.

Nicht nur die Anrainerstaaten der Pazifikküste sind von Tsunamis betroffen. Auch an den europäischen Küsten treten diese Riesenwellen auf, wenn auch wesentlich seltener. Da die Afrikanische Platte sich nach Norden unter die Eurasische Platte schiebt, können durch Erdbeben im Mittelmeer und im Atlantik ebenfalls Tsunamis entstehen.

Auch ein Meteoriteneinschlag kann einen Tsunami auslösen. Die Wahrscheinlichkeit, dass der Himmelskörper auf dem Meer aufprallt, ist größer, als dass er auf Boden trifft, da Meere den größten Teil der Erdoberfläche ausmachen. Um einen Tsunami auszulösen sind jedoch sehr große Meteoriten nötig. Siehe auch Meteoriteneinschlag.

Auswirkungen

Außer den unmittelbaren Folgen für die betroffenen Menschen gibt es bei großen Tsunamis auch erhebliche Spätfolgen:

Frühwarnsysteme

Tsunami-Frühwarnsysteme machen sich zu Nutze, dass bestimmte Informationen über das mögliche Auftreten eines Tsunamis gewonnen werden können, bevor der Tsunami selbst seine zerstörerische Kraft entfalten kann. Seismische Wellen breiten sich viel schneller aus als die Tsunamiwelle selbst. Ist z.B. ein ausreichend dichtes Netz seismischer Stationen verfügbar, lassen sich daher bereits nach wenigen Minuten genaue Rückschlüsse über den Ort und die Stärke eines Erdbebens ziehen, und damit eine möglicherweise davon ausgehende Tsunamigefahr prognostizieren. GPS-Stationen messen zentimetergenau die Verschiebung der Erdoberfläche, welche sich auf den Meeresboden extrapolieren lässt und eine präzise Prognose der Tsunamigefahr ermöglicht. Bojen messen die Tsunamiwelle direkt noch auf hoher See, so dass eine Vorwarnzeit bleibt.

Viele Staaten haben in den letzten Jahrzehnten technische Frühwarnsysteme eingerichtet, die durch das Aufzeichnen seismographischer Plattenbewegungen Tsunamis schon bei der Entstehung erkennen können, so dass durch den gewonnenen Zeitvorsprung die gefährdeten Küstengebiete evakuiert werden können. Dies gilt vor allem für den Pazifischen Ozean. Dort wurde zwischen 1950 und 1965 ein Netz von Sensoren am Meeresboden und an sonstigen wichtigen Stellen eingerichtet, das kontinuierlich alle relevanten Daten misst und über Satellit an das Pacific Tsunami Warning Center (PTWC) in Honolulu auf Hawaii meldet. Dieses wertet die Daten laufend aus und kann innerhalb von 20 bis 30 Minuten eine Tsunami-Warnung verbreiten. Da die betroffenen Staaten über ein effektives Kommunikationssystem und regionale Notstandspläne verfügen, besteht im Katastrophenfall eine gute Chance, dass rechtzeitig Rettungsmaßnahmen eingeleitet werden können.

Einige Küstenstädte in Japan (wie zum Beispiel die Stadt Taro auf der Insel Okushiri) schützen sich durch bis zu 10 Meter hohe und 25 Meter breite Deiche, deren Tore innerhalb von wenigen Minuten geschlossen werden können. Außerdem beobachten Leute vom Küstenschutz mit Kameras den Meeresspiegel auf Veränderungen. Ein Frühwarnsystem gibt bei Erdbeben der Stärke 4 (Richterskala) automatisch Tsunamialarm, so dass die Einwohner evakuiert werden können.

Leider besitzen einige von der Gefahr betroffene Staaten diese Systeme noch nicht, und deren Informationsnetz ist so schlecht ausgebaut, dass eine Vorwarnung nur eingeschränkt oder überhaupt nicht möglich ist. Dies betrifft insbesondere den Indischen Ozean. Zudem kommt es vor, dass Behörden aus Angst des Verlustes der Einnahmequelle Tourismus Tsunami-Warnungen nicht weiterleiten.

Die Staaten am Indischen Ozean haben nach der Flutkatastrophe in Südasien 2004 beschlossen, ein Tsunami-Frühwarnsystem einzurichten. Indonesien hat ein deutsches Frühwarnsystem geordert - das German Indonesian Early Warning System (GITEWS) - das im Auftrag der deutschen Bundesregierung vom Geoforschungszentrum (GFZ) Potsdam und sieben weiteren Institutionen entwickelt wurde und bis 2008 installiert werden soll. Durch seismische Sensoren, Ozean-Bojen und GPS-Technologie soll dieses komplexe System noch exaktere Vorhersagen als das PTWC erlauben.

Ein neues, weltweites System soll Mitte 2005 in Betrieb gehen. Für die Erkennung von den Erdbeben werden die seismologischen Auswertungen der UNO herangezogen, die normalerweise für die Überwachung des vollständigen Atomteststoppvertrages CTBT verwendet werden. Dazu müssen nur die Meldesysteme in die nationalen Alarmsysteme integriert werden, da die Erkennungsmöglichkeiten schon vorhanden sind. Die Meldungen dieser künstlichen durch Nuklearexplosionen hervorgerufenen oder natürlichen Erdbeben laufen in Wien bei der Atomteststoppvertragsorganisation CTBTO zusammen.

Ein „natürliches“ Frühwarnsystem stellt die einheimische Tierwelt dar. Werden Tiere unnatürlich stark unruhig, droht Gefahr. Dies zeigte sich z. B. auf Inselstaaten, wo sich etwa Elefanten rechtzeitig vor dem Eintreffen von Tsunamis auf höher gelegene Gebiete zurückzogen. Das erste sichtbare Anzeichen einer kommenden Riesenwelle ist der Rückzug des Meeres von der Küste.

Bei allen Frühwarnsystemen bleibt natürlich das Problem, dass Fehlalarme bei einer unnötigen Evakuierung hohe Kosten verursachen können und das Vertrauen der Menschen in die Prognosen untergraben.

Persönliche Schutzmaßnahmen

Wenn man von einem Tsunami betroffen ist, sollte man unbedingt folgende Sicherheitsmaßnahmen beachten:

Die größten Tsunamis

21. Jahrhundert

20. Jahrhundert

19. Jahrhundert

18. Jahrhundert

17. Jahrhundert

Antike und Prähistorie

Siehe auch

Einzelnachweise

  1. Kelly, Gavin (2004): “Ammianus and the Great Tsunami”, in: The Journal of Roman Studies, Bd. 94, S. 141-167 (141)
  2. Strabo, "Geographie", 8.7.2
  3. The Lost Cities of Ancient Helike: Principal Ancient Sources
  4. Thucydides: “A History of the Peloponnesian War”, 3.89.1-5
  5. Smid, T. C.: "'Tsunamis' in Greek Literature", Greece & Rome, 2nd Ser., Bd. 17, Nr. 1 (Apr., 1970), S. 100-104 (103f.)
  6. Antonopoulos, John: "The Tsunami of 426 BC in the Maliakos Gulf, Eastern Greece", Natural Hazards, Bd. 5 (1992), S. 83-93
  7. Herodot: "The Histories", 8.129
  8. Smid, T. C.: "'Tsunamis' in Greek Literature", Greece & Rome, 2nd Ser., Bd. 17, Nr. 1 (Apr., 1970), S. 100-104 (102f.)

Literatur

Bücher:

Aufsätze:

 Commons: Tsunami – Bilder, Videos und Audiodateien
 Wiktionary: Tsunami – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen.