Heim

Analysis

Die Analysis [aˈnalyzɪs] (gr. ανάλυσις análysis „Auflösung“, altgr. ἀναλύειν ánalýein „auflösen“) ist ein Teilgebiet der Mathematik, dessen Grundlagen von Gottfried Wilhelm Leibniz und Isaac Newton unabhängig voneinander entwickelt wurden. Die grundlegende Analysis befasst sich mit Grenzwerten von Folgen und Reihen sowie mit Funktionen reeller Zahlen und deren Stetigkeit, Differenzierbarkeit und Integration. Die Methoden der Analysis sind in allen Natur- und Ingenieurwissenschaften von großer Bedeutung.

Die Verallgemeinerung des Funktionsbegriffes in der Analysis auf Funktionen mit Definitions- und Zielmenge in den komplexen Zahlen ist Bestandteil der Funktionentheorie.

Inhaltsverzeichnis

Differentialrechnung

Hauptartikel: Differentialrechnung

Bei einer linearen Funktion bzw. einer Geraden

g(x) = mx + c

heißt m die Steigung und c der y-Achsen-Abschnitt oder Ordinatenabschnitt der Geraden. Hat man nur 2 Punkte (x0,y0) und (x1,y1) auf einer Geraden, so kann die Steigung berechnet werden durch

.

Bei nicht linearen Funktionen wie z.B. f(x) = x2 kann die Steigung so nicht mehr berechnet werden, da diese Kurven beschreiben und somit keine Geraden sind. Jedoch kann man an einen Punkt (x0,f(x0)) eine Tangente legen, die wieder eine Gerade darstellt. Die Frage ist nun, wie man die Steigung einer solchen Tangente an einer Stelle x0 berechnen kann. Wählt man eine Stelle x1 ganz nahe bei x0 und legt eine Gerade durch die Punkte (x0,f(x0)) und (x1,f(x1)), so ist die Steigung dieser Sekante nahezu die Steigung der Tangente. Die Steigung der Sekante ist (s.o.)

.

Diesen Quotienten nennt man den Differenzenquotienten oder mittlere Änderungsrate. Wenn wir nun die Stelle x1 immer weiter an x0 annähern, so erhalten wir per Differenzenquotient die Steigung der Tangente. Wir schreiben

und nennen dies die Ableitung oder den Differentialquotienten von f in x0. Der Ausdruck bedeutet, dass x immer weiter an x0 angenähert wird, bzw. dass der Abstand zwischen x und x0 beliebig klein wird. Wir sagen auch: „x geht gegen x0“. Die Bezeichnung steht für Limes.

ist der Grenzwert des Differenzenquotienten.

Es gibt auch Fälle, in denen dieser Grenzwert nicht existiert. Deswegen hat man den Begriff Differenzierbarkeit eingeführt. Eine Funktion f heißt differenzierbar an der Stelle x0, wenn der Grenzwert existiert.

Integralrechnung

Hauptartikel: Integralrechnung

Die Integralrechnung befasst sich anschaulich mit der Berechnung von Flächen unter Funktionsgraphen. Diese Fläche kann durch eine Summe von Teilflächen approximiert werden und geht im Grenzwert in das Integral über.

Die obige Folge konvergiert, falls f gewisse Bedingungen (wie z. B. Stetigkeit) erfüllt. Diese anschauliche Darstellung (Approximation mittels Ober- und Untersummen) entspricht dem so genannten Riemann-Integral, das in der Schule gelehrt wird.

In der so genannten Höheren Analysis werden darüber hinaus weitere Integralbegriffe, wie z. B. das Lebesgue-Integral betrachtet.

Hauptsatz der Analysis

Differentialrechnung und Integralrechnung verhalten sich nach dem Hauptsatz der Analysis in folgender Weise „invers“ zueinander.

Wenn f eine auf einem kompakten Intervall [a,b] stetige reelle Funktion ist, so gilt für :

und, falls f zusätzlich auf (a,b) gleichmäßig stetig differenzierbar ist,

Deshalb wird die Menge aller Stammfunktionen einer Funktion f auch als unbestimmtes Integral bezeichnet und durch symbolisiert.

Viele Lehrbücher unterscheiden zwischen Analysis in einer und Analysis in mehreren Dimensionen. Diese Differenzierung berührt die grundlegenden Konzepte nicht, allerdings gibt es in mehreren Dimensionen eine reichere mathematische Vielfalt.

Weitere Gebiete der Analysis

Literatur

 Wikibooks: Mathematik in mehreren Bänden, Band 4, Analysis – Lern- und Lehrmaterialien
 Wikibooks: Analysis – Lern- und Lehrmaterialien
 Wiktionary: Analysis – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen und Grammatik