Heim

Gruppentheorie

Dieser Artikel beschreibt die mathematische Disziplin Gruppentheorie; Für den gleichnamigen Begriff bei der Frage nach der William-Shakespeare-Urheberschaft, siehe dort.


Gruppe (Axiome EANI)

berührt die Spezialgebiete

ist Spezialfall von

umfasst als Spezialfälle

Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus den Drehungen eines regulären n-Ecks in der Ebene um Vielfache des Winkels 360°/n besteht, denselben Gesetzen wie die Addition der ganzen Zahlen modulo n. Neutrales Element – entsprechend der Null bei der Addition – wäre hier die Nicht-Drehung oder äquivalent die Drehung um einen Winkel von 0°.

Große Beiträge zur Gruppentheorie stammen unter anderem von Évariste Galois, Niels Henrik Abel und Sophus Lie.

Knappe Begriffsdefinitionen finden sich im Gruppentheorie-Glossar.

Inhaltsverzeichnis

Erklärung für Nicht-Mathematiker

Gruppen werden in der Mathematik verwendet, um vom Rechnen mit konkreten Zahlen zu abstrahieren (sprich: um mit Symbolen anstelle von Zahlen zu rechnen). Entsprechend besteht eine Gruppe aus einer Menge von abstrakten Dingen oder Symbolen und einer „Rechenvorschrift“ (Verknüpfung), die angibt, wie mit diesen Dingen umzugehen ist.

Genauer gesagt: Von einer Gruppe spricht man, falls für eine Menge zusammen mit einer Verknüpfung je zweier Elemente dieser Menge, zum Beispiel „a × b“, die folgenden weiteren Anforderungen erfüllt sind:

  1. Die Verknüpfung zweier Elemente der Menge ist wiederum ein Element derselben Menge (Abgeschlossenheit).
  2. Die Klammerung beim Ausrechnen ist unerheblich (Assoziativität): a × (b × c) = (a × b) × c.
  3. Es gibt ein Element e in der Menge, das nichts bewirkt (neutrales Element): a × e = e × a = a.
  4. Es gibt zu jedem Element a ein „Spiegelbild“ (inverses Element) a* mit der Eigenschaft, beim Verknüpfen mit a das neutrale Element zu ergeben: a × a* = a* × a = e.

Spezialfall: Wenn man zudem noch die Operanden vertauschen darf, also stets a × b = b × a gilt (Kommutativität), dann liegt eine abelsche oder kommutative Gruppe vor.

Beispiele für abelsche Gruppen sind

Die sehr allgemeine Definition von Gruppen ermöglicht es, nicht nur Mengen von Zahlen mit entsprechenden Operationen als Gruppen aufzufassen, sondern auch andere abstrakte Dinge und Symbole, die die geforderten Eigenschaften erfüllen wie zum Beispiel die Menge der Drehungen und Spiegelungen (Symmetrietransformationen), durch die ein N-Eck auf sich selbst abgebildet wird, mit der Hintereinanderausführung der Transformationen als Verknüpfung.

Siehe auch: Diedergruppe

Mathematische Definition des Gruppenbegriffs

Definition

Ein Paar mit einer Menge G und einer inneren zweistelligen Verknüpfung heißt Gruppe, wenn folgende Axiome erfüllt sind:

Eine Gruppe heißt abelsch oder kommutativ, wenn die Verknüpfung symmetrisch ist, d. h. wenn zusätzlich das folgende Axiom erfüllt ist:

Bei dieser Definition darf nicht übersehen werden, dass die Verknüpfung eine innere Verknüpfung sein muss, dass sie also jedes Paar von Gruppenelementen auf ein Element abbildet, das auch wieder in der Gruppe liegt: . Diese Eigenschaft wird oft Abgeschlossenheit genannt (wobei diese Bezeichnung eigentlich nur einen Sinn ergibt, wenn G in einer größeren Menge H als Teilmenge enthalten ist, auf der die Verknüpfung ebenfalls definiert ist).

Bemerkungen zur Notation

Häufig wird für die Verknüpfung das Symbol benutzt, man spricht dann von einer multiplikativ geschriebenen Gruppe. Das neutrale Element heißt dann auch Einselement und wird durch 1 symbolisiert. Wie auch bei der gewöhnlichen Multiplikation üblich, kann in vielen Situationen der Malpunkt weggelassen werden.

Die Gruppeneigenschaften lassen sich auch additiv notieren, indem für die Verknüpfung das Symbol + benutzt wird. Das neutrale Element heißt dann auch Nullelement und wird durch 0 symbolisiert. Das zum Gruppenelement a inverse Element wird in einer additiv geschriebenen Gruppe nicht durch a − 1, sondern durch a symbolisiert. Üblich ist die additive Schreibweise bei abelschen Gruppen, während nicht abelsche oder beliebige Gruppen zumeist multiplikativ geschrieben werden.

Ist die Verknüpfung klar, so schreibt man für die Gruppe häufig nur G.

Abschwächung der Definition

Die Gruppenaxiome können formal abgeschwächt werden, indem man die Axiome für das neutrale und das inverse Element folgendermaßen ersetzt:

Diese formal schwächere Definition ist äquivalent zu der ursprünglichen Definition, denn es gilt:

Grundlegende Eigenschaften einer Gruppe

Grundkonzepte der Gruppentheorie

Ordnung einer Gruppe

Die Mächtigkeit (Kardinalität) | G | der Trägermenge der Gruppe nennt man Ordnung der Gruppe oder kurz Gruppenordnung. Für endliche Mengen ist dies einfach die Anzahl der Elemente.

Ordnung von Elementen

Hauptartikel: Ordnung eines Gruppenelementes

Ergibt ein Element a der Gruppe endlich viele Male n mit sich selbst verknüpft das neutrale Element 1, d. h. gilt: an = 1, so nennt man das kleinste derartige n die Ordnung des Elements a. Falls kein solches n existiert, sagt man, dass a unendliche Ordnung hat. In beiden Fällen entspricht die Ordnung des Elements der Ordnung der von ihm erzeugten Untergruppe.

Davon ausgehend kann man zeigen, dass die Ordnung jedes Elements einer endlichen Gruppe endlich ist und die Gruppenordnung teilt (Satz von Lagrange).

Untergruppen

Hauptartikel: Untergruppe

Ist H eine Teilmenge der Trägermenge G einer Gruppe und ist selbst eine Gruppe, so nennt man H eine Untergruppe von G.

Hierzu ein wichtiger Satz: (Satz von Lagrange) Die Ordnung (Anzahl der Elemente) jeder Untergruppe H einer endlichen Gruppe G ist ein Teiler der Ordnung der Gruppe G. Ist speziell | G | eine Primzahl, dann hat G nur die (trivialen) Untergruppen {e} (bestehend aus dem neutralen Element) und G selbst. Die Anzahl der Elemente einer Gruppe heißt auch ihre Ordnung.

Nebenklassen

Definiert man auf der Menge G die Relation durch:

,

erhält man eine Äquivalenzrelation auf G. Die sog. Äquivalenzklasse zu einem Element (d. h. diejenigen Elemente b, so dass zwischen a und b die Relation besteht), ist die Menge

und bezeichnet sie durch oder kurz aH. Da diese Menge alle Elemente von G enthält, die durch Linksverknüpfung von dem Element a mit sämtlichen Elementen aus H entstehen, heißt sie Linksnebenklasse von H nach dem Element a.

Die Menge aller Linksnebenklassen von H bezeichnet man mit G / H.

Definiert man eine andere Relation durch

,

so ergibt sich die Menge der zu a äquivalenten Elemente in G als

.

Diese Menge entsteht also durch Rechtsverknüpfung der Elemente aus H mit dem Element a; sie wird entsprechend mit oder kurz Ha bezeichnet und Rechtsnebenklasse von H nach dem Element a genannt.

Beispiel: Man nehme die ganzen Zahlen mit der Addition als G. Dann ist die Menge H aller ganzzahligen Vielfachen von 3 eine Untergruppe. Bildet man die rechten Nebenklassen, so erhält man folgende Tabelle:

H     H+1   H+2  H+3=H  H+4=H+1 ...
...   ...   ...
-6    -5    -4
-3    -2    -1
 0     1     2
 3     4     5
 6     7     8
...   ...   ...

Man sieht, dass diese Tabelle wieder genau alle ganzen Zahlen enthält, wobei keine Zahl zweimal vorkommt. Für endliche Gruppen besagt der Satz von Lagrange: Die Anzahl der Nebenklassen multipliziert mit | H | ergibt | G | .

Die Spalten sind genau die Teilungsreste bei der Division durch 3. Jetzt mag man versucht sein, hier nur mit den Nebenklassen zu rechnen, also modulo 3, und sich fragen, ob es so ein Konzept zu jeder Untergruppe für beliebige Gruppen gibt. Dies führt zur folgenden Definition:

Normalteiler

Hauptartikel: Normalteiler

Ist für jedes Element die linke Nebenklasse von H gleich der rechten, d. h. aH = Ha, so nennt man H einen Normalteiler von G.

Ein Sonderfall ist: In einer abelschen Gruppe ist jede Untergruppe ein Normalteiler.

Faktorgruppe

Hauptartikel: Faktorgruppe

Damit können wir nun unser Konzept des Rechnens auf den Nebenklassen umsetzen: Ist N ein Normalteiler, dann kann man nur mit den Nebenklassen rechnen und erhält eine Gruppe.

Die Verknüpfung ist wie folgt gegeben:

Diese Definition ist konsistent, da das Ergebnis von der Wahl der Elemente g und h aus den Nebenklassen unabhängig ist.

Die mit dieser Verknüpfung und den Spalten (Nebenklassen) als Elementen definierte Gruppe nennt man die Faktorgruppe von G bezüglich N.

Zyklische Gruppen

Hauptartikel: Zyklische Gruppe

Gibt es in G ein Element a, so dass man jedes andere Element als Potenz an (mit einer ganzen Zahl n, die auch negativ sein darf) schreiben kann, so nennt man G eine zyklische Gruppe und a erzeugendes Element.

Klassifikation der endlichen einfachen Gruppen

Eine nicht-triviale Gruppe heißt einfach, wenn sie keine Normalteiler außer der trivialen Gruppe und sich selbst hat. Beispielsweise sind alle Gruppen von Primzahlordnung einfach. Die einfachen Gruppen spielen eine wichtige Rolle als „Grundbausteine“ von Gruppen. Seit 1982 sind die endlichen einfachen Gruppen vollständig klassifiziert. Sie lassen sich in einer von 18 Familien endlicher einfacher Gruppen und 26 Ausnahmen, die sporadischen Gruppen einteilen.

Ausblick

Die Eigenschaften endlicher Gruppen lassen sich mit dem Zauberwürfel veranschaulichen, der seit seiner Erfindung vielfach im akademischen Unterricht eingesetzt wurde, weil die Permutationen der Ecken- und Kantenelemente des Würfels ein sichtbares und handgreifliches Beispiel einer Gruppe darstellen.

Es gibt auch Verallgemeinerungen der Gruppentheorie. Eine Herangehensweise ist die Definition der Halbgruppen und Monoide: Für Halbgruppen wird nur die Assoziativität verlangt. Existiert in einer Halbgruppe ein neutrales Element, so spricht man von einem Monoid.

Eine andere Verallgemeinerung stellen die Quasigruppen dar.

Anwendung in der Chemie

Die Chemie beschäftigt sich mit Molekülen. Die Koordinaten der Atome der Moleküle in ihrer Gleichgewichtskonformation lassen sich mit Hilfe von Symmetrieoperationen (Spiegelung, Drehung, Inversion, Drehspiegelung) auf sich selbst abbilden. Die Symmetrieoperationen haben die Eigenschaften von Gruppen, die so genannten Punktgruppen. Außerdem kann gezeigt werden, dass die Gruppentheorie auch für die Symmetrie von Funktionen gilt, also auch für Wellenfunktionen in der Quantenmechanik.

Beispielanwendungen aus der Chemie

Anwendung in der Physik

Die Symmetriegruppen der Kristalle werden selbstverständlich auch für die Festkörperphysik verwandt.

Zudem baut die Quantenmechanik vielfach auf Symmetriegruppen und Lie-Gruppen auf. So werden die Elektronenspinzustände durch die Paulischen Spinmatrizen-Gruppe beschrieben. Auch in der Kernphysik werden gruppentheoretische Überlegungen zur Beschreibung des Kernaufbaus verwandt. In der Teilchenphysik und den Quantenfeldtheorien schließlich findet die Gruppentheorie Anwendung als Ordnungsschema.

Siehe auch