Heim

Orthomode Transducer

Ein Orthomode Transducer (OMT), manchmal auch Orthomodenkoppler genannt, ist ein passives Bauelement der Mikrowellentechnik. Er spaltet zirkular polaisierte Wellen auf bzw fügt orthogonal polarisierte Wellen zusammen. Haupteinsatzgebiet sind einfache VSAT Antennenanlagen. Dort übernimmt er die Aufgabe eines Diplexers bzw. Zirkulators, wenn Empfangs- und Sendesignal orthogonal polarisiert sind, und leitet beite Signale gemeinsam über eine Antenne. Die Übersprechung zwischen Empfangs- und Sendesignal ist typischerweise besser als 40dB.

Der Begriff setzt sich aus den folgenden Teilen zusammen:


Inhaltsverzeichnis

Polarisation

Siehe Polarisation


Die Artikel Orthomode Transducer#Hohlleiter und Hohlleiter überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zu vereinigen. Bitte äußere dich in der Diskussion über diese Überschneidungen, bevor du diesen Baustein entfernst. Tubas 19:36, 20. Mär. 2008 (CET)

Hohlleiter

Siehe Hohlleiter

Hohlleiter sind Wellenleiter. Sie bestehen aus einem metallischen, im Idealfall beliebig gut leitfähigen Metallgehäuse, das von einem Dielektrikum, üblicherweise Atmosphäre (Luft), gefüllt ist. Für Satellitenanwendungen wird als Dielektrikum das Vakuum betrachtet. In einem Hohlleiter können sich elektromagnetische Wellen ausbreiten.

Allgemein sind diese elektromagnetischen Wellen als Überlagerung schräg einfallender, fortlaufend an den Wänden des Hohlleiters reflektierter linear polarisierter Freiraumwellen vorstellbar. Die Feldverteilung im Hohlleiter ergibt sich aus der Berechnung der Wellengleichungen unter Berücksichtigung der Randbedingungen an den metallischen Wänden. So hat das elektrische Feld nur senkrechte Komponenten auf der metallischen Oberfläche, das magnetische nur tangentiale. Während Wellen im freien Raum nur Feldkomponenten senkrecht zur Ausbreitungsrichtung besitzen, zeichnen sich Wellen im geschlossenen Raum durch Feldkomponenten senkrecht und längs zur Ausbreitungsrichtung aus.


Moden

Die Lösung der Wellengleichungen ist nicht eindeutig. In einem Hohlleiter führt eine elektromagnetische Welle fester Frequenz zur Ausprägung unterschiedlicher Wellenbilder. Ein Wellenbild beschreibt die Verteilung von elektrischer und magnetischer Feldstärke in den drei Raumrichtungen innerhalb des Hohlleiters. Diese verschiedenen Wellenbilder bezeichnet man als Moden der elektromagnetischen Welle. Moden werden allgemein mit Xnm bezeichnet. Die drei Platzhalter entsprechen drei Kriterien für das Wellenbild. Als Breite eines Rechteckhohlleiters wird die längere Kantenlänge bezeichnet. Die zweite Kantenlänge heißt Höhe des Hohlleiters.


E-/H-Moden

Elektrisches und magnetisches Feld stehen bei elektromagnetischen Wellen immer senkrecht aufeinander. Damit die Welle sich in einer Raumrichtung fortpflanzen kann, müssen Wellenkomponenten in diese Raumrichtung existieren. Zeigt das elektrische Feld in Ausbreitungsrichtung, spricht man von E-Moden. Zeigt das magnetische Feld in Ausbreitungsrichtung, spricht man von H-Moden. Die Abbildung zeigt einen Längsschnitt durch einen Hohlleiter (z-Richtung).

Die Feldlinien des elektrischen Feldes stehen immer senkrecht auf dem Außenleiter und verlaufen von einer Wandseite zur anderen. Je nachdem, wie viele Maxima der Feldverlauf über die gesamte Breite des Hohlleiters aufweist, erhält die Modenbezeichnung ihren ersten Index. Die Breite eines Hohlleiters wird mit a bezeichnet. Bei einem Maximum, der Mindestanzahl für die elektrische Feldverteilung, spricht man also von einer H1m- bzw. E1m Welle.

Analog bezeichnet die Anzahl an Maxima im Feldverlauf des elektrischen Felds über die gesamte Höhe des Hohlleiters den zweiten Index. Die Höhe eines Hohlleiters wird mit b bezeichnet. Die Feldstärke kann über die gesamte Hohlleiterhöhe konstant bleiben (es muss also kein Maximum geben), man spricht dann von einer Hn0 bzw. En0 Welle.

Die Feldlinien des magnetischen Feldes verlaufen immer parallel zur Außenwand und sind in sich geschlossen. Die Feldverteilung des magnetischen Felds ergibt sich aus der des elektrischen Felds.


Hohlleiterwellenlänge und Grenzfrequenz

Während der Abstand der Maxima der Feldverteilung in x- bzw. y-Richtung von der Freiraumwellenlänge der Welle abhängt, ist für den Abstand der Maxima in z-Richtung, also in Ausbreitungsrichtung, die Hohlleiterwellenlänge entscheidend.

Die Hohlleiterwellenlänge λH,nm ist gemäß der Gleichung von der Freiraumwellenlänge λ0, der Breite a des Hohlleiters und der Höhe b und dem jeweiligen Mode abhängig. Die Hohlleiterwellenlänge ist immer größer als die Freiraumwellenlänge gleicher Frequenz. Es gibt keinen Unterschied zwischen der Hohlleiterwellenlänge des Hnm, -Modes und des entsprechenden Enm, -Modes.

Die Hohlleiterwellenlänge hängt nicht-linear von der Freiraumwellenlänge ab. Es existiert eine Wellenlänge, für die die Hohlleiterwellenlänge gegen unendlich geht.

Eine unendlich große Hohlleiterwellenlänge bedeutet, dass die Welle nicht ausbreitungsfähig ist. Da die Hohlleiterwellenlänge für einen Mode einer bestimmten Frequenz von den Abmessungen des Hohlleiters abhängt, sind in einem Hohlleiter nicht beliebige Moden ausbreitungsfähig. Je höherwertig ein Mode ist, desto größer ist seine Grenzfrequenz, bzw. desto kleiner ist die Grenzwellenlänge λgrenz,nm.

Die Grenzfrequenz teilt den Frequenzbereich in zwei Bereiche, den Dämpfungsbereich und den Ausbreitungsbereich. Entscheidend ist hierbei das Verhalten des Ausbreitungskoeffizienten γ über der Frequenz.


Im Dämpfungsbereich ist die Welle nicht ausbreitungsfähig. Der Ausbreitungskoeffizient ist als αmax rein reell. Die Welle wird demnach aperiodisch gedämpft. Nicht ausbreitungsfähige Moden können angeregt werden und zumindest zeitweilig einen Teil der Wellenenergie binden. Ist die Frequenz der Welle gleich der Grenzfrequenz, so ist der Ausbreitungskoeffizient gleich Null. Die Welle wird im rechten Winkel zwischen den Seiten des Hohlleiters reflektiert, ohne dass ein Energietransport stattfindet.

Für Frequenzen oberhalb der Grenzfrequenz ist die Welle ausbreitungsfähig. Der Ausbreitungskoeffizient ist im Idealfall und damit rein imaginär. Die Welle wird demnach nicht gedämpft, sondern breitet sich im Hohlleiter mit einer frequenzabhängigen Phasenverschiebung aus. Im realen Hohlleiter wird auch eine ausbreitungsfähige Welle gedämpft. Dazu tragen vor allem Verluste in der nur endlich leitfähigen Hohlleiterwand und durch Oberflächenströme bei.

Der Wellenwiderstand verknüpft die Amplituden der elektrischen und magnetischen Feldstärken einer elektromagnetischen Welle. Dabei gilt analog zum Ohmschen Gesetz.


Grundmode

Unter Grundmode versteht man den ersten ausbreitungsfähigen Mode in einem gegebenen Hohlleiter. Das meint den Mode mit der niedrigsten unteren Grenzfrequenz.

Im Rechteckhohlleiter ist der Grundmode der H10-Mode. Der linke Teil der Abbildung zeigt die Feldverteilung für das elektrische Feld bei der Draufsicht auf den Hohlleiterquerschnitt. Über die Breite des Hohlleiters folgt die Feldstärke einer Sinushalbwelle. Die Feldlinien verlaufen von einer Seite des Hohlleiters zur anderen. Die rechte Seite der Abbildung zeigt die Feldverteilung des magnetischen Feldes bei der Draufsicht auf den Hohlleiterquerschnitt. Über die Höhe des Hohlleiters bleibt die Feldstärke konstant. Die Feldlinien verlaufen tangential zu den Hohlleiterwänden.

In technischen Anwendungen werden Hohlleiter nach Möglichkeit so dimensioniert, dass nur der eindeutige Grundmode ausbreitungsfähig ist. So ist das Wellenverhalten im Hohlleiter vorhersagbar und die gesamte Wellenenergie ist im nutzbaren Grundmode gebunden.

In einem Hohlleiter mit quadratischem Querschnitt existieren zwei gleichberechtigte Grundmoden. Erst durch die Festlegung eines Koordinatensystems und der damit verbundenen Zuordnung von Breite und Höhe werden die Modenbezeichnungen eindeutig.

Die vertikal polarisierte Welle entspricht dem H10-Mode, die horizontal polarisierte Welle entspricht dem H01--Mode.


Systembeschreibung des OMT

Der Orthomode Transducer (OMT) zur Trennung bzw. Zusammenführung orthogonal linear polarisierter elektromagnetischer Wellen. Der OMT bildet in einem Antennensystem die letzte Stufe vor der eigentlichen Antenne.

Viertordarstellung

Der OMT ist elektrisch gesehen ein Viertor. Der physikalische Aufbau entspricht allerdings dem eines Dreitors, da das physikalisch gemeinsame Tor die beiden elektrisch unabhängigen Polarisationsrichtungen zusammenfasst.

Tor1 ist das „gemeinsame Tor“. Es setzt sich elektrisch betrachtet aus dem Tor1a für die vertikal polarisierte Welle (H10-) und dem Tor1b für die horizontal polarisierte Welle (H01-) zusammen. Das Tor, in das die vertikal polarisierte Welle ein- bzw. ausgekoppelt wird heißt Tor2 oder „Durchgangstor“. Das Tor, in das die horizontal polarisierte Welle ein- bzw. ausgekoppelt wird heißt Tor3 oder „Seitentor“. Diese Namensgebung nimmt die Wahl des Grunddesigns für den OMT vorweg.


Streumatrix

Die Streumatrix eines idealen OMT beschreibt das gewünschte Systemverhalten.

Entsprechend der Streumatrix ergeben sich die folgenden Eigenschaften des Systemverhaltens.


Geometrie eines OMT

Allgemein

Kernstück des einfachen allgemeinen Grunddesigns ist ein gemeinsamer Verzweigungsbereich, in dem die beiden Polarisationsrichtungen getrennt bzw. zusammengeführt werden.

Daneben besitzt jedes Tor ein Anpassnetzwerk, das zwei Aufgaben erfüllt. Zum einen wird so die gute breitbandige Anpassung des Tors sichergestellt. Zum anderen wird der Übergang auf die vorgegebenen geometrischen Schnittstellen (nachfolgender Hohlleiterquerschnitt) geschaffen. Die Abbildung zeigt den schematischen Aufbau eines OMT. Die Anpassnetzwerke bestehen aus Hohlleiterübergängen.


Einfache Grundgeometrien

Wie die Bezeichnung der Tore bereits vorwegnimmt, entspricht die ursprüngliche Geometrie des OMT einem T-Stück. Diese Grundgeometrien sind bei einer Anpassung an allen Toren von -25 dB für eine relative Bandbreite von 10 % geeignet. Die relative Bandbreite ist das Verhältnis der Mittenfrequenz zur absoluten Bandbreite.

Ein OMT besteht im einfachsten Fall also aus einem durchgehenden Hohlleiterstück und einem seitlich im rechten Winkel aufgesetzten Seitentor. Der Verzweigungsbereich ist dabei so aufgebaut, dass er von der vertikal polarisierten Welle möglichst ungehindert passiert werden kann. Die horizontal polarisierte Welle wird dagegen reflektiert und in das Seitentor ausgekoppelt werden. Dabei wird nach der Methode unterschieden, mittels der die horizontal polarisierten Welle reflektiert wird.


Taper/Branching

Die erste Variante ist der Taper/Branching-OMT. Hier wird der Hohlleiterquerschnitt des durchgehenden Hohlleiterstücks in der Höhe so verringert, dass die horizontal polarisierte Welle wegen Unterschreitung der unteren Grenzfrequenz nicht mehr ausbreitungsfähig ist. Für die vertikal polarisierte Welle stellt der Verzweigungsbereich prinzipiell nur einen Übergang vom Querschnitt des Hohlleiters an Tor1 zu dem des Hohlleiters an Tor2 dar. Dieser Übergang kann gestuft oder kontinuierlich sein.


Septum/Branching

Bei der zweiten Variante, dem Septum/Branching-OMT wird die Reflexion der horizontal polarisierten Welle durch ein Septum im Verzweigungsbereich erreicht. Ein Septum ist eine dünne Metallplatte, die in diesem Fall waagrecht mittig in den gemeinsamen Hohlleiter eingebracht wird.

Auf die vertikal polarisierte Welle, deren elektrische Feldkomponenten senkrecht auf der Metallplatte stehen, hat das Septum im Idealfall ohne ausgedehnte Höhe keinen Einfluss. Die elektrischen Feldkomponenten der horizontal polarisierten Welle verlaufen tangential zur Ebene des Septums. Das Septum stellt somit einen Kurzschluss für die horizontal polarisierte Welle dar. Die Welle wird reflektiert und in das Seitentor ausgekoppelt.

Beiden Varianten ist gemein, dass die Reflexion der horizontal polarisierten Welle frequenzabhängig ist. Prinzipiell ist die zweite Variante für breitbandige Anwendungen eher geeignet, da das Septum, und damit die Reflexionsstelle, direkt am Ort der Seitenauskopplung wirken.


Symmetrische Geometrien

Gerade im Verzweigungsbereich eines OMT, in dem die beiden verschieden polarisierten Wellen getrennt bzw. zusammengeführt werden, werden viele höhere Moden angeregt. Um dies zu verringern, werden Strukturen entwickelt, die für beide Polarisationsrichtungen symmetrisch sind. Diese Strukturen sind allerdings sehr komplex und deshalb mit einem sehr großen Entwicklungsaufwand und großen Fertigungskosten verbunden.

Obwohl eine monolithische Fertigung sehr teuer ist, bringt sie doch den Vorteil, dass die gefertigte Struktur keine Naht- oder Spaltstellen aufweist. Nur so ist mit Blick auf Effekte der passiven Intermodulation ein optimales Verhalten erreichbar.

Siehe auch

Polarisation, Tor (Elektrotechnik), Antennentechnik

Literatur